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Abstract 

In this paper, we study the stability and evolution of the solitary waves in perturbed generalized 
nonlinear Schrödinger equations. Our method is based on the completeness of the bounded eigen- 
states of the associated linear operator in L2 space and a standard multiple-scale perturbation 
technique. Unlike the adiabatic perturbation method, ours uncovers all the instabilitymechanisms 
in the perturbed equations. As an example, we consider the perturbed cubic-quintic nonlinear 
Schrödinger equation in detail and determine the stability regions of its solitary waves. The gener- 
alization of this method to other perturbed nonlinear wave systems is also discussed. 
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1    Introduction 

In recent years, the perturbed generalized nonlinear Schrödinger equation has attracted a great 
deal of attention. This equation is of the form 

iAt + Axx + f(\A\2)A = ep(A,A'), 0-D 

where / is a real-valued algebraic function, p is a spatial differential operator, and e is a small 
parameter. It has been shown to govern the evolution of a wave packet in a weakly nonlinear and 
dispersive medium and has thus arisen in diverse fields such as water waves, plasma and nonlinear 
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optics [1. 2. 3. 4. 5]. In particular, this equation is now widely accepted in optics field as a good 
model for optical pulse propagation in nonlinear fibers (see [6. 7] and the references therein). The 
rapid advances in optical-soliton based fast-rate telecommunication systems in recent years has 
stimulated intensive research on it. Another application of Eq. (1.1) is in pattern formation, where 
it has been used to model some nonequilibrium pattern forming systems (see [8| and the references 
therein). The unperturbed form of this equation (e = 0) supports solitary waves of the form 

A = e.V'x/2^-V-2/4)t-tp0ao(x _ yt _ Io)i (1.2) 

where a0(#) is a real-valued function and satisfies the equation 

a0ee - u;a0 +/(ao)ao = 0, (l-3a) 

a0 —0,      |0|-oo, (1.3b) 

and V.JJ(> 0),xo and po are arbitrary real constants.   Note that the existence of these solitary- 
waves is the basis for telecommunication systems using optical solitons as information bits. When 
perturbations are present, one very important concern is whether these solitary waves will persist 
or not.   This question has been studied extensively in the literature.   The linear stability of the 
solitary waves in the unperturbed equation (1.1) has been investigated in [9, 10]. where a criteria for 
instability was given. When f{x) = x, Eq. (1.1) is the perturbed nonlinear Schrödinger equation, 
whose solitary waves were examined in numerous articles such as [7, 11, 12, 13, 14, 15] among 
others.   The dynamical behavior of the solitary waves in this equation is now well understood. 
But for more general forms of /, the results are few and far from complete.  This case has been 
investigated in [8, 16, 17, 18] by various methods. In [8], the adiabatic perturbation technique was 
employed (see also [13|).   These authors assumed a quasi-stationary form for the solitary wave, 
determined the slow evolution of the parameters of this wave and then discovered certain types of 
instability from those evolution equations. But as they pointed out, the stability they established 
only refers to the particular class of perturbations compatible with the quasi-stationary solution 
assumption. It was recognized that there could be other instability mechanisms which could not be 
found by this adiabatic method (this is indeed the case). In [16], the Evans function approach was 
used.  By calculating the small eigenvalues bifurcating from the zero eigenvalue of the associated 
linear operator in the unperturbed equation (1.1), the author gave the conditions for this type 
of instability.   His results are basically equivalent to those in [8].   We would like to emphasize 
here that both results in [8] and [16] missed certain types of instability hidden in Eq. (1.1). The 
numerical approach to this problem was taken in [17, 18].  In this work, the authors investigated 
the stability of analytic solitary waves of the cubic-quintic complex Ginzburg-Landau equation and 
found that they are generally unstable, except in a few special cases. The instability was caused by 
the existence of growing disturbances whose largest growth rates were numerically estimated. The 
authors also obtained parameter regions in which stable solitary waves exist for various choices of 
parameter values. In their work, e was not small, and it was not clear just what was the source of 
their instability. 

In this paper, we develop a new analytical method for studying the stability and evolution of the 
solitary waves in Eq. (1.1). This method is based on knowing the closure of the bounded eigenstates 
of the associated linear operator in L2 space, combined with a standard multiple-scale perturbation 
method. L2 is the space of all the square-integrable functions. In essence, this method is similar 



to the one developed in [12] (see also [14. 15j) for solitons in perturbed integrable equations. But 
here the new feature is that, since the unperturbed equation (1.1) is non-integrable in general, the 
completeness of the bounded eigenstates (or equivalently. the Green's function) of the associated 
linear operator has to be established anew. We will use a direct scattering technique analogous to 
that in [20. 21] to accomplish this task. In this process, the structure of the spectra of this linear 
operator will also be obtained and detailed. Using this new method, we can uncover all instabilities 
of the solitary waves in Eq. (1.1) and give a complete account of the stability and evolution of the 
solitary waves of this equation. We would like to point out here that, in principle, this method 
can be applied to any perturbed nonlinear wave equation for uncovering all the instabilities of its 
permanent waves. We will come back to this point in section 4. 

After the general procedure of this method is introduced, we will apply it to the perturbed cubic- 
quintic nonlinear Schrödinger equation and carry out the analysis in detail. Assuming the pertur- 
bation to only contain terms of the Ginzburg-Landau type (as in [8, 16. 17, 18]), we will show that 
the perturbed cubic-quintic nonlinear Schrödinger equation allows at most two solitary waves, of 
which, at most one is stable. We also find that the solitary waves of the model equation (1.1) have 
three instability mechanisms which are related to perturbations of respectively the zero, non-zero 
(discrete) and continuous eigenvalues of the associated linear operator in the unperturbed equa- 
tion (1.1).  Of these instabilities, the instability related to perturbations of the non-zero discrete 
eigenvalues has never been studied before. Its capture requires expansion of the perturbation series 
of the solution out to second order, e2.   We further derive the necessary and sufficient stability 
conditions for these solitary waves and specify the regions of parameter space, inside of which, this 
equation has stable solitary waves.  Finally, the generalization of this method to the study of the 
stability of permanent waves in other nonlinear wave systems is discussed. 

2    The Procedure 

In this section, we detail the procedure for studying the stability and evolution of the solitary waves 
(1.2) in Eq.   (1.1).  For simplicity, we consider the case where the perturbation term, p, is of the 

f0rm " d*A 
P(A,A') = £>(|A|2)££, (2.1) 

fc=0 ax 

where pk (k = 1,... ,n) are complex functions. This will exclude parametrically forced perturba- 
tions (see [22]). But even in such cases, the analysis given here can be readily modified. Anticipating 
the slow evolution of the free parameters of the solitary wave when a perturbation is present, we 
write the solution of this equation in the form 

A = ei^2+»"a(fl)tirllT2,...,;e), (2-2) 

9 = x - f Vdt - 0o,  P = [ (w + — )dt - po, (2-3) 
Jo Jo 4 

where 



and .,'. V.OQ and pn are all functions of slow time T,   = d.     2  = &  When Eq. 
substituted into Eq. (1.1).'the equation for a is found to be 

o ■), 

Ulf 
^n^aee-f(\a'2)a=    iF - t{iaT, - JÖ0Tla9 - ( ^ - pf" ^ A>or; )a}       ^ |2J, 

-f2{iaT: - i'ÖoTjao ^ (^p ~ -T" ' A)7?)a} *" 0(';-3)' 

Where                                                      F=p(A.A')e-—. ri-) 

To solve this equation, we expand a into a perturbation series 

a = a0(6) +eax +e2a2 + ■■■■ (2-6) 

and take a0 to satisfy Eq. (1.3). Thus, the zeroth order of (2.4) is now trivially satisfied. At order 

f. ai is governed by the linear equation 

iau --'«!+ al68 + r(0)ai + q(0)a\ = u«i, (2-7a) 

a 111 =o 

where 

0. (2-~b) 

if'ra^. (2-S) r = /(ag)+a§/'(ag),     q = ag/'(ag), 

u,1 = Fo - ia0Tl + idoTx aoe - (— — + Am )ao- ^-»> 

F0=p(Ao,AZ)e-«°^, (2-10) 

and 40 = elV8/2^ipa0 Note that F0 appears to have a fast time t dependence, but it actually 
does not. due to the form of p in Eq. (2.1). This fact will be used in the later analysis. Denoting 

Ui = (ai.a[)T, Eq. (2.7) can be rewritten as 

(zdt + L)Uy = (w,.-w[f, (2-lla) 

£/i|,=o=0. (2.Hb) 

where the linear operator L is 

( dee-^ + r q \ (2.12) 

and 

ai = ( i  o )'   az = ( 0   -1 
(2.13) 

are Pauh spin matrices. 

The linear operator L is the key to solving this problem. If we could expand all quantities in the 
eigenstates of this operator, then we can expand and solve (2.4) to all orders. So, first we need the 
eigenstates. u;(x. A), where A is the eigenvalue, and the eigenvalue spectra of the operator L. where 

W = \4>. (2-14) 



We will now discuss the main features of this eigenvalue problem. Due to the form of L. if A is 
an eigenvalue and v the corresponding eigenfunction. then it follows that -A. A* and -A* are also 
eigenvalues, with corresponding eigenfunctions as a^v.v* and c^c". In the appendix, we detail 
the structure of the spectra of the operator L. using the direct scattering technique. We show that 
the discrete eigenvalues of L are zeros of the analytical function A2 defined there. Now. there are 
four free parameters in the unperturbed solitary wave (1.2). Perturbations of. or shifts in these 
four free parameters correspond to the four degrees of freedom represented by the degenerate A = 0 
eigenvalue. Thus A = 0 is at least a four-fold eigenvalue of L. Two of these degenerate eigenvalues 

have two discrete eigenfunctions 

tun =aoe(l.l)r.   ^02 = a0{l. -1)T. (2.15) 

which exactly satisfy the eigenvalue equations 

LVQI = 0,   LIA>02 = 0. (2.16) 

The other two eigenvalues correspond to two generalized eigenfunctions, called "derivative states" 

in [14. 15) and elsewhere, and are given by 

«Poi=|öao(l,-l)r.   0O2 = aOl,(l.l)
T. (2-17) 

These states are not true eigenfunctions, but they are necessary for closure [23]. They satisfy the 

modified eigenvalue equations 
L<t>Q\ = 001,    £002 = <A32- (2.18) 

The total number of the discrete eigenvalues of L (with the multiplicity of all degenerate eigenvalues 
included) is given by the "winding number" of A2, as its argument moves along the path. P. 
described in the appendix, and shown in Fig. 3. The continuous eigenvalues of L are found along 
the two half lines {A : A > u;} and {A : A < -a»}. For each value of A in those intervals, there are two 
continuous eigenstates, one symmetric in 9 (denoted as VJ3(9, A)) and the other one anti-symmetric 
in 9 (denoted as 0„(0, A)). In the appendix, we also show that the union of the discrete regular 
eigenstates, the discrete generalized eigenstates and the continuous eigenstates, form a complete 
set in the space of L2. Therefore, Eq. (2.11) can be solved by expanding the solution. Uu and the 
inhomogeneous term, in this complete set of functions. 

For simplicity, in the rest of the paper, we assume that zero is a four-fold discrete eigenvalue of L. 
In addition, we assume that L has only two other simple, discrete, non-zero eigenvalues, denoted 
as \d and -\t, with the corresponding eigenfunctions denoted by rbd and ip-d = ovl)<i- This is the 
case for the perturbed cubic-quintic nonlinear Schrödinger equation, to be discussed in more detail 
later in this paper. If L has more than the above eigenvalues, or if the non-zero discrete eigenvalues 
are not simple, then the following analysis can be easily appropriately modified. 

Under the above assumptions, we then can expand {w\,-w\)T and U\ in this closed set.  Using 

arbitrary coefficients, we can take 

(iwi, -w{)T =   coi^i^) -I- 002^02(0) + doi4>oi(0) + do2<fc)2(0) (2 19) 
+C*V\i(0) + C_d0-d(0) + ^{CaWaC*, A) + c,(A)<k(0, A)}<*A, 



l\ =   hon,'Qi(9) +ho2<~,02(9) +goiooi{0) +502002(0) ,., .^ 
+hdivd(6) + h-dV-d(0) + f^haWvaid. A) + hs(\)Vs(9, \)}d\. 

where the interval / = (-sc. --■! U U. ac). We will define an inner product by 

<f.g>=  I" fT(9)a,g(9)d9. (2.21) 

Then it is easy to show that the only non-zero inner products of these bounded eigenstates are 

< L'01-OOI >•   < t'02,O02 >■   < t'd,t'd >.   < V-d-V-d >•< t'a.t'a >.  and < VS.VS > 

In particular. 
<Wa(-.A),t-0(-.A')>=fca(A)6(A-A'). (2.22a) 

< vs(-. A). vs(: A') >= k3(X)6(X - A'). (2.22b) 

where ifca(A) and ks(\) can be related to the scattering data of Eq. (2.14). When the expansions 
(2.19) and (2.20) are substituted into Eq. (2.11). and the above inner products are used, then we 

obtain the following equations for the coefficients in U\: 

i—-+501= On.      i~öf-+go2 = CQ2, (2.23a) 

i*l* + Xdhd = cd,     z%^ - \dh-d = et, (2.23c) 
dt at 

Ä + A/i8=Ca,      Ä + Ah3=c3, (2.23d) 
at at 

hox=ho2= 501 = 502 = hd= h.d = ha = hs = 0.    at f = 0. (2.23e) 

Here 
< (lüi, -VJ\)T.001  > < (Wi,-W[)T,002 > 

Cni    = = . 0)2   = ~ 
< Vox, 001 > < ^02, 002 > 

(2.24a) 

= < (ti/i,-Ti7{)T,^oi >        ^   = <(u;i.-^i)r.U'Q2 > (2 24b) 

<t/fjl,4>01> ' 2 < ^'02,002 > 

= < (wi,-w[)T,iifd > = < (u'i,-u;nr.c'-d > (2.24c) 
Cd~       <il>d,w>      '      ~d <iif-d,i'-d> 

= <(wu-wl)T,Vg > = < {wi,-w[)T.\L'9 > (2.24d) 
ka ks 

Note that c_d = -c*d since t/>_d = <7iVd and is real. For the same reason. h_d - h'd. Since wx does 
not depend on the fast time t, the quantities in Eqs. (2.24) do not either. To suppress the secular 

terms in /ioi,^02,9oi and 502, we need to require that 

coi = C02 = doi = do2 = 0. (2.25) 



Ln view of Eqs.   (2.24) and (2.9). these four conditions will produce the following slow evolution 

equations for V.JJ.QQ and po on T\ time scale: 

(2.26a) 
dV _  4/^000 Re(F0)d6 

dTi ~       jrx 4 d9 

a2
0d9 + ^L 6(aX.d6 = 2 /     0ao Im(F0)dö. (2.26c) 

(V dr. 
+ 2^) /" (agLdö - ^ r ff(ag)wdö = 4 f° ao..Re(Fo)d0. (2.26d) 

ail   i-oc aiiJ-oo J-oo 

Here "Re" and Tm" represent the real and imaginary parts of a complex number. It is noted 
that Eqs. (2.26a. b) have been obtained before by the adiabatic perturbation method in 181. 
Similar equations were also derived for solitons in perturbed nonlinear Schrodinger equations (see 
(7, 11. 15]). to order for the solitary waves of the model (1.1) to be stable, these equations must 
have stable fixed points. Otherwise, an instability will arise. Such an instability would be due 
to the zero eigenvalue, of the linear operator L. bifurcating and moving into the unstable region, 
because of the perturbations. This has been discussed in [8, 16]. 

When conditions (2.26) are satisfied, solving Eq. (2.23). we get 

/ioi = fy)2 = 5oi = 502 = 0- (2.27a) 

hd = cd{\ - ad(T{)e
lX<l}/\d,     h-d = h'd. (2.27b) 

ha=ca{l-aa(Ti)elXt}/\, (2.27c) 

h3 = cs{l-a3(Ti)e'M}/X. (2.27d) 

and 
a«j(0) = aa(0) = as(0) = 1. (2.28) 

Then the solution U\ is 

Ui = hdvd{6) + h-iii).d{9) + J{ha(X)xpa(9, A) + h3(\)v3(9, \)}d\. (2.29) 

Here the a's are constants of the integration, and possibly functions of 7\, as indicated. The c's 
are slowly varying with T\ when V and u are. 

It is important to realize here that, in order for the solitary wave (1.2) to be stable, in addition to 
the conditions (2.25), we also need to require that the coefficients hd, /i_d, ha and hs in U\ do not 
grow unbounded, on either the t or the 7\ scales. On t scale, ha and h3 are already bounded since 
the continuous eigenvalues of the operator L are always real (see Eq. (2.27 c, d)). But in order for 
hd and h-d to remain bounded on this scale, it is necessary for A^ to be real. If this is not so, then 
the solitary wave is unstable. We now shall assume that \<t is real. 



On the Tx scale, we need to ensure that ad. aa and QS in Eq. (2.27) remain bounded. To obtain the 
evolution equations for these coefficients, we need to expand (2.4) out to second order, e2. When 
Eq. (2.6) is substituted into Eq. (2.4) and terms of order ^2 collected, an equation for n2 will be 
obtained. Denoting U2 = (a2.a2)T. the equation for U2 is 

(idt + L)U2 = (>2. -w'2)
T. (2.30a) 

U2\t=o = 0. (2.30b) 

where 
w2 =    F\ - iaiTi + iQoTxa\6 - {VQOTJZ - VT^/2 + poTi)ai 

-za0T2 + iQoT2aoe - (V80T2/2 - VTi9/2 + Por>o (2.31) 
-ao/'(a§)ai(ai + 2a{) - ag/"(a§)(ai + a[)2/2. 

Fx = {pAiAo^WAx+pA-iAo.^ADe-"6'2-^, (2.32) 

and Ai = elV0/2^ipai. This equation can be solved analogous to Eq. (2.11). We expand (w2, -w'2)
T 

and ir
2 as 

(w2, -wZ,)7 =    coiwoi(0) + co2Vo2(Ö) + doi<Z>oi(#) + ck>2(Po2(6) (2 33) 
+CdwM + C-dxl)-M + f[{CaWM0, A) + C3(A)%(Ö. A)}dA. 

and 
U2 =   hoiW\(9) +/k)2V02(ö) + 301001 (Ö) +302002(0) /2 34) 

+/wd(#) + h-diD-d{0) + J[{ha(\)ipa(0, A) + MA)<Z>3(0, A)}dA. 

The coefficients in U2 are governed by equations similar to (2.23) with only a hat added to each 
quantity. To suppress the secular terms in hoi, ^02, 301 and 302, we will obtain the evolution 
equations for the parameters V, ^, 60 and p0 on T2 timescale. These equations are negligible in 
deference to Eqs. (2.26) which govern their evolutions on T\ timescale. The coefficient hd in U2 is 
governed by the equation 

l2h± + A,Ad = cd, (2.35) 
dt 

where 

dhd 
+ ^"d = cd, 

Cd =    :»2,-w'2)
T^d> (2 36) < (ti;2, —W2)T,ibd > 

< i^'d, U>d > 

Now cd has resonant terms which are proportional to elXit. To see this, we put Eq. (2.1) into (2.32) 

and get 

F^tipM^i^Ax^A^+p^^e-^--. (2.37) 
fc=0 

When Eqs.   (2.27) and (2.29) are substituted into Eq.   (2.37), we find that the e,A«£ and e~xXit 

coefficients in F\ are proportional to cdad/Ad and (cdad)*/Ad respectively. Suppose such terms in 

^1 are „ ~ 
£^lei(ö)eiA^ + {^±e2{e)Ve-^\ (2.38) 

Ad Ad 

then the coefficient of the eiXit term in Cd is found, from Eq. (2.36), to be 

K = {iictadhi + (h +k2 + fc3)cdad}/Ad, (2-39) 



where 

k? 

ki = {V9m!2 _ YT.e,2^p«Ty-~\d2'       f 1.2.40a) 

(cd±cd)f~JKvdl +vd2){2aof'(a2
0)(u

2
dl 4-fdlfd2 + fg2) + ag/"(a§)(L-dl - fd2)

2}dg 

(2.40b) 

A..3 = ■|-^Tt1"rTf,r- T2-40C) 

and ei and e2 were introduced in (2.38). Since KelXit term in cd is a homogeneous solution of Eq. 
(2.35). then in order to suppress the secular growth in hd, we must have K = 0. This gives us a 
slow evolution equation for cdad, which is 

±£A = l{kl+h + k3)cdad. (2.41) 

Note that both fci and fc2 are real quantities. Thus if Im(Ar3) is negative. cdad will exponentially 
grow, and the solitary wave (1.2) will be unstable. This instability is caused by the pumping of 
the solitary wave energy into the discrete eigenmodes n'±d when the perturbation is turned on. 
It can also be interpreted as the initially real discrete eigenvalues. ±Ad, moving into an unstable 
region in the presence of perturbations. In fact, Xd is shifted to Ad 4- e(fci + fc2 4- h) in view of Eq. 
(2.27b). This instability was never analyzed before in the literature. Similar argument applies to 
the coefficients ha and ~hs of the continuous eigenstates in C/2- Suppression of the secular terms in 
those coefficients will produce evolution equations for aa(Ti, A) and as{T\, A) on X\ scale. If aa or 
as grows unbounded, instability will also arise. This instability is caused by energy being injected 
into the continuous eigenmodes of L, or the continuous eigenvalues of L moving into the unstable 
region, under perturbations. In summary, by studying the evolution equations of the solitary wave 
parameters and the coefficients in the U\ solution, all the instability mechanisms can be. and have 
been now uncovered. 

In the above, we have obtained the slow evolution equations for V, u;,0o,po an<^ ad- The equations 
for aa and as in the coefficients of the continuous eigenmodes of U\ are more troublesome. The 
reason is that these equations involve convolutions which couple together aa and a3 over all the 
continuous eigenvalues. To circumvent this difficulty, it is helpful to view this type of instability as 
due to the continuous eigenvalues of L moving into the unstable region. Note that the continuous 
eigenvalues of the linearization operator around a solitary wave, even for the perturbed equation 
(1.1) as well as for the unperturbed version, can easily be specified (see [24]). Thus this type 
of instability can be determined without the necessity of deriving and examining the evolution 
equations for a«, and a3. With this hurdle removed, then our procedure, as described above, can 
be carried out, and the stability regions of the solitary waves under perturbations can be specified. 



3    The Perturbed Cubic-Quintic Nonlinear Schödinger Equation 

In this section, we use the perturbed cubic-quintic nonlinear Schödinger equation ot Ginzburg- 
Landau type as an example and carry out the detailed analysis. This equation is of the form 

iAt + Axx -r c3\A\2A + c3U4|4.4 = ti(bxAxx + -.A- b3\A\2A - b-n:Al4A). (3.1) 

where all the coefficients are real-valued, and c3 = ±1 by scaling. When e = 0. Eq. (3.1) supports 

solitary waves of the form (1.2), where 

a°( ) ~~  c3 + v 1 + 16c5^/3 cosh(2^~ 9) 

If c3 = 1. this wave exists when C-0JJ > -3/16: if c3 = -1. it exists when c5 > 0. The linear operator 

I is given by Eqs. (2.8) and (2.12) where f(x) = c3x -I- c-0x
2. 

We first establish the spectrum structure of L. We have shown that its continuous eigenvalues are 
the intervals / = (-oc. -UJ\ U [UJ. OO). TO determine the total number of its discrete eigenvalues, we 
numerically calculated A2 along the path P shown in the appendix for c3 = ±1 and c5,^ being 
allowed various values.  For each of the three cases: (1) c3 = l,c5 > 0, (2) c3 = l.c5 < 0. and (3) 

C3 - _1 (C5 > 0), the results are always qualitatively the same. In case (2), the orbit of A2. as C 
moves along P. is sketched in Fig.  1. We see that in this case, the winding number of A2 is four, 
thus L has four discrete eigenvalues (multiplicity of eigenvalues included). In the other two cases, 
we find that the winding number of A2 is six. Recall that A = 0 is always a discrete eigenvalue of 
L. To determine its multiplicity, we chose a small closed path around A = 0 (i.e. C, = e17r'4) and find 
that the winding number of A2 is always four, for all three cases. This means that A = 0 is always 
a four-fold discrete eigenvalue of L. We then conclude that in case (2), A = 0 is the only discrete 
eigenvalue of L, while in the other two cases, L has two additional non-zero, discrete eigenvalues. 
Due to the symmetry of the eigenvalues, these two non-zero eigenvalues have to be either real or 
purely imaginary. In addition, one is always the negative of the other. We will denote them as Ad 

and -Xd as before.  Closer examination reveals that in case (1), Ad is real, and in case (3), it is 
purely imaginary.  This is consistent with the results in [9, 10].  It indicates that in case (1). the 
solitary wave (1.2) is linearly neutrally stable in the unperturbed equation (3.1). But in case (3). 
it is linearly unstable, thus also unstable under weak perturbations.  In the rest of the paper, we 

assume c3 = 1. 

Next we determine the slow evolution equations for the solitary wave parameters; V,aj.60 and po- 
In view of the perturbation term in Eq.   (3.1), and after some algebra, we find that Eqs.   (2.26) 

become „„    .   t/i 
dV 4&1/fo

0Oa§,dö^ (;U) 

du      S{^)-bxV
2/2 (3.4) 

^2. = ^o = 0 (3.5) 
dTi      dTx 
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where ,,-     , ,. 

c5 4 4c5  j„xa0dti 

The fixed points of Eqs. (3.3) and (3.4) are V = 0 and 

5(o.-) = 0. (3.7) 

Ln order for the fixed points to be stable, we need to require that 

{,1>0       ^1 <0. (3.8) 1 £ In J^agdö 

Explicit expressions for S(^) and f™x %d0 can be obtained depending on the sign of c5. 

1. CO > 0: In this case.   

fX aide = V'3/C5 (TT/2 -arctanu"1). (3.9) 

5M = -nL(5i +s^ +   ,o   S3U<—-)■ (3-10) v 16c§ TT/2-arctanu   l 

where 
5l = 6lC5 - 863C5 + %5 - 327c|/3, (3.11a) 

S2 = 16c5(b5+biC5/3), (3.11b) 

53 = -6lC5 + 863C5 - %5, (3-llc) 

and ,  
u = ^16c5u;/3. (3.12) 

It is easy to check that S"(aj) does not change sign for UJ > 0. hence the concavity of Sp) 
does not change. As a result. Eq. (3.7) has at most two fixed points and Eq. (3.1) allows at 
most two solitary waves. When Eq. (3.7) has two fixed points, S'(*J) will have opposite signs 
at these points. From Eq. (3.9) we see that the sign of fj In/f^, a^dß is always positive, thus 
one of these two fixed points is stable, and the other unstable. We can also readily show that, 
if 65 + biC5/3 < 0, Eq. (3.4) has one unstable fixed point; if b5 + bxc5/3 > 0, it has none or 

two fixed points (one stable and the other one unstable). 

2. C5 < 0: In this case, similar results can be obtained. Here 

H a2
Qdß = v''-3/c5 tanh-1 v. (3.13) 

J -00 

SM..^(si+^ + _^_,, (3,4, 

where s, (i = 1,2,3) are given in Eq. (3.11), and v = N/-16C5U;/3. Similarly, we can 
show that Eq. (3.1) has at most two solitary waves, at most one stable. Furthermore, if 
355 _ 4{,3c5 - 167c|/3 < 0, Eq. (3.4) has one unstable fixed point; if 365 - 453c5 - 167^/3 > 0. 

it has none or two fixed points (one stable and the other unstable). 
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When Eqs. (3.3) and (3.4) allow stable fixed points, the corresponding solitary wave may still be 
unstable due to the non-zero discrete eigenvalues moving into the unstable region under pertur- 
bations. We have shown that when c5 < 0. non-zero discrete eigenvalues do not exist, but when 
r--, > 0. two such eigenvalues of opposite sign exist and are real. Suppose Xd and -Xd are these 
two non-zero eigenvalues, and ivd = {vdi. vd2)

T and v-d = <nvd the corresponding eigenfunctions. 
Upon inserting the perturbation terms of Eq. (3.1) into Eq. (2.40c) and after some simplifications. 

we find that 
Im(Jfc3) = &i(mi + V'2/4) - 7 + 2m363 + 3m565. (3.1o) 

where 

and 

_ j-joV-dio     Q><ae>™ (3.16a) 

_ /-"„agtöi-QM (3 16b) 
m3 " FMx - *&*> ' 

m       JT^tä-*2*)«* (3.16c) 
5 ~   JTooC^i - rtJM ' 

If we take V'(= 0) and aj as the stable fixed points of their evolution equations (3.3) and (3.4), then 
Im(fc3) in Eq. (3.15) can be evaluated. If it is negative, according to Eq. (2.41). the solitary wave 

in Eq. (3.1) will be unstable. 

Lastly, we consider the instability of the solitary waves (1.2) in Eq. (3.1) caused by the continuous 
eigenvalues of L under perturbations. In this case, the results in [24| indicate that when &i < 0 
or 7 > 0. these continuous eigenvalues will move into the unstable region due to perturbations. 

Otherwise, this type of instability is absent. 

Now we summarize the above results on the stability of the solitary waves (1.2) in the perturbed 
cubic-quintic nonlinear Schrödinger equation (3.1). When c3 = -1, all the solitary waves are 
unstable. When c3 = 1 and c5 < 0, the solitary wave is stable if and only if &i > 0. 7 < 0. V = 0 
and u, is the stable fixed point of Eq. (3.4). When c3 = 1 and c5 > 0. it is stable if and only if 
bx > 0. 7 < 0, V = 0, w is the stable fixed point of Eq. (3.4), and Im(fc3) given by Eq. (3.15) is 
positive. Comparison of these results with those by the adiabatic perturbation method [8| shows 
that, when c3 - 1 and c5 < 0. the adiabatic method yields the correct stability conditions: but 
when c3 = 1 and c5 > 0, it does not. The reason is that it misses the instability caused by the 
additional mode with the non-zero discrete eigenvalue, A*, into which the solitary wave could emit 

energy, as manifested by Eq. (2.41). 

As two examples, we choose c3 = l,c5 = 1 or -1, 7 = -0.1, b3 = -1 and determine the regions in 
the (61,65) plane, for the existence of stable solitary waves by using the above results. For the given 
bx and 65 values, we first numerically determine the stable fixed point <j from Eqs. (3.7) and (3.8) 
using Newton's method. This alone will give the region of stable solitary waves for c5 = -1. It is 
shown in Fig. 2 (II). When c5 = 1, we take the stable fixed point, w, of Eq. (3.7), and numerically 
determine the discrete eigenmode Xd and 1>d from Eq. (2.14), using the shooting method. We 
then evaluate mk (k = 1,2,3) from Eqs. (3.16) and Im(fc3) from Eq. (3.15), with V being taken 

as zero. The stable region is the set of (61,65) points where the stable fixed point, u, exists and 
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lm(/c3) is positive. This region is shown in Fig. 2 (I). At any point in these regions. Eq. (3.1) has 
exactly one stable solitary wave. We observe that in both cases, when the diffusive term (6.) in 
the perturbation increases, for the solitary wave to be stable, the nonlinear absorption (65) has to 
decrease, but not be below a certain lower bound. An interesting fact is that, in the c$ = 1 case, 
stable solitary waves exist even when 65 < 0 (see Fig. 2 (I)). In this case, both the nonlinear effects 
in the perturbations are amplifying, but they are offset by strong diffusion. Thus a stable pulse is 
still possible. However, such stable regions are very small. Note that in Fig. 2 (I), inside the region 
enclosed by the two solid curves and the b5 axis, Eqs. (3.3) and (3.4) have a unique stable fixed 
point. This is the region captured by the adiabatic perturbation method [8|. But the solitary wave 
is still unstable in most of this region due to instability of eigenvalue Xd bifurcations. 

4    Discussion 

In this paper, we studied the stability and evolution of the solitary waves in perturbed generalized 
nonlinear Schrödinger equation (1.1), and the perturbed cubic-quintic nonlinear Schrödinger equa- 
tion of Ginsburg-Landau type (3.1) in particular. We found that the solitary waves in Eq. (1.1) are 
subject to three types of instability which are associated with the bifurcations of the zero, non-zero 
(discrete), and continuous eigenvalues of the linear operator L in the presence of perturbations. 
Our stability conditions for the solitary waves are both necessary and sufficient. When specializing 
to the perturbed cubic-quintic nonlinear Schrödinger equation of Ginzburg-Landau type, we proved 
that for any set of parameters, Eq. (3.1) has at most one stable solitary wave. We also specified the 
parameter regions of stable solitary waves and graphed them for two particular examples. When 
compared to the results in [8| by the adiabatic perturbation method, we found that the adiabatic 
method missed certain types of instability, especially the one associated with the bifurcation of the 
non-zero discrete eigenvalues of the operator L. 

The method we employed in this work is based on the completeness of the bounded eigenstates of 
the operator L and a standard multiple-scale perturbation technique. The key in this analysis is the 
completeness of L's bounded eigenstates in L% space. It allowed us to solve the relevant linearized 
equations at various orders and detect secularities in the linear solutions, which then set the stage 
for the multiple-scale perturbation method to come into play. For general perturbed nonlinear 
wave systems, if this completeness of the bounded eigenstates of the associated linear operator can 
be established, then the analysis in this paper can be adapted to those systems as well and a full 
account of the stability and evolution of permanent waves in the presence of perturbations can 
be provided. The completeness of the bounded eigenstates of a linear operator has been studied 
extensively in the literature (see [20, 25, 26] for example). It has been well established for self- 
adjoint operators. For generic non-self-adjoint operators, as discussed in the appendix, we can prove 
the completeness using the direct scattering technique similar to that in [20|. For general operators, 
corresponding to discrete eigenvalues, generalized eigenstates as well as the regular eigenstates may 
exist. But if the set of the discrete eigenvalues is finite, we can still show that the eigenstates and 
the generalized eigenstates of the linear operator form a complete set. The details will be discussed 
elsewhere. In this light, our recipe for the study of stability and evolution of permanent waves in 
perturbed nonlinear systems can be widely applied. 
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Appendix 

In this appendix, we study the spectrum structure of the operator L given by Eq. (2.12). and estab- 
lish the completeness of its bounded eigenstates in Li space. For the exactly integTable nonlinear 
Schrödinger equation, the eigenstates of L are related to the squared Zakharov-Shabat eigenstates. 
Thus the completeness of L's bounded eigenfunctions can be established by the inverse scattering 
technique [15. 27]. But for the generalized nonlinear Schrödinger equation, that connection breaks 
down. In this case, we will use the direct scattering method as developed in [20. 21] to accomplish 
this task. For convenience, we will replace 9 by x. We first consider the general potentials q(x) and 
r(x) which vanish at infinity, then specialize to the present case where q and r are given by Eq. 
(2.8). 

The eigenvalue problem 

can be written out as 

;AD 

uxx - {u + X)u = -r(x)u - q{x)vy (A2a) 

vxx - {u - X)v =-r(x)v - q(x)u. (A2b) 

To avoid dealing with the branch cuts at A = ±u>, we make the following parameter transform 

A = u,(C2+C2)/2. (A3) 

Then Eq. (A2) becomes 

K 

/     0 1       0 0 \ 
62 - r 0       -q 0 

0 0       0 1 
\     -q 0 r,2-r 0/ 

(A4) 

where Y = (u,ux,v,vx)T, and 

Ä = v/ÜV2(C + rl),    r? = i^uV2(C-C"1)- (A5) 

The rest of the analysis is analogous to that for a n-th order scalar scattering problem considered 
in [20]. Thus the results will only be sketched here with the proofs omitted. We define the singular 
set £ as 

£ = {C : the real parts of any two numbers of 6, -6, TJ and -rj are equal}. (A6) 
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It is easy to see that E is the set of all the rays originating from s" = 0 with angles being the 
multiples of TT/4. We number these rays cyclically as Eo, Ei and the sectors C\ E as Q{. Q2- ■ ■■ 
(shown in Fig. 3). On E0. Re(r?)=0; on Et. Re{6) =Re(-r?) {r 0): on E2. Re(<5)=0: in sector 0;. 
Re(ö)>R.e(-r?j>Re(r/)>Re(-(5); in Q2- Re(-T])> Re(<5)>Re(-ö)>Re(^): etc. In each sector, we 
define two fundamental matrices $~ and $" of Eq. (A4) according to the ordering of 6. -6. i] and 
-rj in that sector. For instance, in Q\. we define 

$~(x.i,') = Tn-(x.s")e xJ (A- 

where J = diag(<5. -rj, rj, -<5), 

m~~(x,Q —> 

I 1 
6 
0 

0 0 1   \ 
0 0 -6 
1 1 0 

-T) rj 0   J 

±oc. (AS) 

and m- are bounded as |x| — oc. In other sectors. <t>- can be similarly defined. It is easy to see 
that <&= so defined are unique. They exist for all C € C \ E. apart from a discrete set Z which are 
all the zeros of Ak {k = 1,2, 3) to be defined below. At the points Ck <E Z. <&* have pole singularity. 

Next we define the functions 

Ai = mx A mj AmJ A 7714/(—4<5TJ), (A9a) 

A2 = m^" Amj AmJ Am4"/(-4<577), (A9b) 

A3 = m^ A m2" A m3" A m4
+/(-4^), (A9c) 

where "A" represents the wedge products of vectors. It can be shown that Ak (k = 1,2.3) are 
independent of x, analytic in each sector fi», and Ak — 1 as |C| — oo. Furthermore. A2 is analytic 
across the boundary E[. The discrete eigenvalues A of the operator L correspond to the zeros of 
A2 through relation (A3). The continuous eigenvalues of L correspond to the two rays E0 and 
E2. We choose a path P in the C plane as shown in Fig. 3, with its direction counter-clockwise. 
This path starts at C = 0+ -I- ooi, moves down vertically to C = z, half-circles around it. and 
moves downward again until it reaches £ = 0. Then it quarter-circles around s' = 0 and moves 
horizontally along the upper side of the positive Re(0 axis, until it arrives at £ = 1. Then it 
half-circles around ( = 1, keeps on moving horizontally, and eventually ends at C = oc + 0~i. In 
the A plane, this path corresponds to one which encloses the entire A plane except the continuous 
spectrum {A : A > u or A < -a/}. Thus the winding number of A2 along P: 

N = -i- / ^ß-<K = ^{arg{A2(oo) - arg{A2(cc + 0} (A10) 

gives the total number of the discrete eigenvalues of L (multiplicity of non-simple eigenvalues 

counted). 

The completeness of the bounded eigenstates of L in L2 space can be established by constructing 

the Green's function to the equation 

(L - A)G(i,y,C) = *v(*)diag(l, -1), (AH) 
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and proving that G can be expressed as a linear combination of L's bounded eigenstates. We call 
the operator L generic if (1) A* (fc = 1.2.3) have no common zeros and no multiple zeros: (2) 
thev have no zeros on Y.. and (3) the set of their zeros is finite. For a generic self-adjoint operator, 
the"completeness of its bounded eigenstates in L2 space was proved in [20] using this approach. Ln 
our case. L is not self-adjoint.   But if it is generic, slight modification to the analysis in [20| can 
be made to establish the completeness relation as well.   If L is non-generic (as is the case when 
q(x) and r(x) are given by Eq.   (2.8)). a discrete eigenvalue may be multi-fold, and its algebraic 
multiplicity may be larger than its geometric multiplicity. In such cases, the generalized eigenstates 
of the discrete eigenvalues are also needed for closure (see [15]). But as long as the number of L's 
discrete eigenvalues is finite, similar techniques can be used to show that the bounded eigenstates 
of L (including the generalized discrete eigenstates) also form a complete set. As a practical guide, 
if a discrete eigenvalue is a Jfc-th fold root of A2, then correspondingly k regular or generalized 

eigenstates should be included. 
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Figure 1: The trajectory of A2(0 as £ moves along the path P for c3 

is specified in the appendix and shown in Fig. 3. 

1 and c5 < 0. The path P 
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Figure 2: Stability regions (shaded) of the solitary waves in Eq.   (3.1) for C3 = 1,7 = -0.1 and 

63 = -1. (I) c5 = 1; (II) es = -1. 
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